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Uninterpreted Functions

In PVS, functions can be defined without a “body.” These
functions are called uninterpreted.

floor(a: real): int

abs: [int -> nat]

which_quadrant(x: real, y: real): {i: nat | i >= 1 AND i <= 4}

When would you use an uninterpreted function?

I Different implementations (e.g. sorting)

I The precise function is unknown, but its general
characteristics are known

I The function represents unknown information (e.g. time
of user input)

Types are important!

I Only type information can be used in a proof

I Should restrict the types as much as possible. A poor
type choice is abs:[int -> int]
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Dependent Types

Dependent types are types that depend on other values

real_stack: TYPE = [# size: nat,

elements: [{n: nat | n < size} -> real]

#]

mod(m: nat, d: posnat): {r: nat | r < d}

In this lecture...

I We will explore how the prover can take advantage of
dependent types

I We will use the floor ceil theory from the prelude as a
running example
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Functional Attempt to define floor

First try, an interpreted function

x: VAR real

floor(x): int = x - fractional(x)

I Ugh, now we have to define another function
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Axiomatic attempt to define floor

x: VAR real

floor(x): int

floor_def: AXIOM floor(x) <= x & x < floor(x) + 1

This fully defines the key property of a floor function, but

I Must ensure that our axioms are consistent
Warning: it is easy to miss problems here!

I Must explicitly bring in the properties of floor through
the floor def axiom

I But on the plus side, we don’t have to prove axioms
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The Prelude Theory floor ceil

floor_ceil: THEORY

x: VAR real

i: VAR integer

floor(x): {i | i <= x & x < i + 1}

The return type of floor depends upon the argument x

I The return type is so constrained that it only has one
element (and we can prove this in PVS)

I The main property of floor is contained in the return
type

I Thus, without providing a body, we have completely
defined this function

I ceiling is defined in a similar manner:

ceiling(x): {i | x <= i & i < x + 1}
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Proving Key Properties

The ASSERT command tries to prove a result automatically
using the type information.

floor_def: LEMMA floor(x) <= x & x < floor(x) + 1

Proof of floor def:
|-------

{1} (FORALL (x: real): floor(x) <= x & x < floor(x) + 1)

Rule? (SKOSIMP*)

|-------

{1} floor(x!1) <= x!1 & x!1 < floor(x!1) + 1

Rule? (ASSERT)

|-------

{1} floor(x!1) <= x!1 & x!1 < 1 + floor(x!1)

Rule? (ASSERT)

Simplifying, rewriting, and recording with decision

Q.E.D.
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Observations on the Proof

I The following properties of floor are proved with
(SKOSIMP*) (ASSERT):

floor_ceiling_reflect1: LEMMA floor(-x) = -ceiling(x)

floor_int : LEMMA floor(i) = i

ceiling_int : LEMMA ceiling(i) = i

floor_ceiling_int : LEMMA floor(i)=ceiling(i)

floor_split : LEMMA i = floor(i/2)+ceiling(i/2)

floor_within_1 : LEMMA x - floor(x) < 1

ceiling_within_1 : LEMMA ceiling(x) - x < 1

I Sometimes a TYPEPRED floor(...) will be needed. This
usually becomes necessary when nonlinear arithmetic is
present in the sequent
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Existence TCCs
PVS requires us to demonstrate that the return type is
non-empty

% Existence TCC generated ... for floor(x): {i | i<=x & x<i+1}
floor_TCC1: OBLIGATION

(EXISTS (x1:[x:real -> {i: integer | i<=x & x<1+i}]): TRUE);

The proof relies on supplying a value that satisfies the type:

(inst + "lambda x: choose({i: integer | i<=x & x<1+i})")

Then, to show this set is non-empty, we rely on the following
properties of the reals located in the prelude:

lub_int: LEMMA

upper_bound?((LAMBDA i, j: i <= j))(i, I)

=> EXISTS (j:(I)): least_upper_bound?((LAMBDA i,j:i<=j))(j,I)

axiom_of_archimedes: LEMMA EXISTS i: x < i

We will spare you the details, though you can get the proof
by issuing M-x edit-proof in the prelude.pvs buffer that is
provided when you type M-x vpf
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Motivation for Parameterized Types

Sometimes dependent types are not enough:

real_array: TYPE = [below(N) -> real]

PVS does not know what N is. Even if we add a variable
declaration for N the problem persists:

N: VAR posint

real_array: TYPE = [below(N) -> real]

Note, constant types are defined as expected

real_array_ten: TYPE = [below(10) -> real]
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Parameterized Types

There are two ways to use use N in a type declaration:

I By adding N as a theory parameter

arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

I By adding N as a type parameter

arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

I What is the difference?
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Scope!

Theory parameter N is known throughout the theory; there
is only one N. Information about N is implicit.

arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

A: VAR real_array

P: pred[real_array]

lem: LEMMA FORALL A: P(A)

Type parameter N is not fixed within the theory. We can not
declare a global variable A as above, but we
must qualify A and P fully in each lemma:

arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

lem: LEMMA FORALL (A:below_array(N)),

(P:pred[below_array(N)]): P(A)
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Using Total Functions For Partial Specification

I In PVS, all functions are total, so the domains should
be suitably restricted. For example:

div(x: real, y: {nz: real | nz /= 0}): real

I To partially specify the behavior, one can use total
functions:

x,y,z: VAR real

unspecified(x,y,z): real

faulty: VAR bool

component(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

I The uninterpreted function unspecified returns a value

I But, we do not know anything about that value (except
its type)

I Rushby calls these “partially-specified total functions”
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Equal Unspecifieds

I If we are not careful, we can prove things we don’t
mean

component1(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

component2(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE 4*x + 4*y + 4*z

ENDIF

I We probably didn’t mean to say that if component1 and
component2 are both faulty then they produce the same
value. That is, we can prove:

faulty1 & faulty2 =>

component1(x,y,z,faulty1) = component2(x,y,z,faulty2)

I Solve this with two unspecified functions: unspecified1

and unspecified2
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Equal Unspecifieds in Distributed Systems

I Equal unspecifieds is more likely in distributed systems
where the same function is executed on different
processors. Solutions?

I Add another parameter to unspecified:
x,y,z: VAR real

i, proc_id: VAR nat

unspecified(x,y,z,i): real

faulty: VAR bool

component_on(x,y,z,faulty,proc_id): real =

IF faulty THEN unspecified(x,y,z,proc_id)

ELSE x*x + y*y + z*z

ENDIF

I If you are worried about persistence over time you may
have to add a parameter for time:

component_on_at(x,y,z,faulty,proc_id,clock_time): real =

IF faulty THEN unspecified(x,y,z,proc_id,clock_time)

ELSE x*x + y*y + z*z

ENDIF
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Equal Unspecifieds in Distributed Systems
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ENDIF

I If you are worried about persistence over time you may
have to add a parameter for time:
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Another Method for Partial Specification

component_a(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

component_b(x,y,z,faulty): { w: real | NOT faulty =>

w = x*x + y*y + z*z}

I The dependent type mechanism is used to constrain the
return type of the function

I But, only when faulty is FALSE

I We cannot prove

component_a(x,y,z,faulty) = component_b(x,y,z,faulty)

I Why?
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Motivation for Judgements

An example based on the NASA mod library:

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

mod pos says, if mod’s second argument is positive, then the
return type is

I non-negative

I smaller than the second argument

Let’s prove mod pos
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Proof of mod pos

|-------

{1} FORALL (i:integer, m:posnat): mod(i,m) >= 0 AND mod(i,m)<m

Rule? (skosimp*)

|-------

{1} mod(i!1, m!1) >= 0 AND mod(i!1, m!1) < m!1

Rule? (expand "mod")

|-------

{1} i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (typepred "floor(i!1 / m!1)")

{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1
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Proof of mod pos (cont’d)

{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (grind-reals)

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

Applying GRIND-REALS,

Q.E.D.

A total of 4 proof steps.
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Why Judgements?1

i,k: VAR int

m: VAR posnat

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

Essentially, mod pos describes the type of mod whenever the
second parameter is positive.

I Would be nice if this were known to prover

I Might eliminate some nuisance TCCs

1PVS only uses the spelling judgement, an alternate English spelling
is judgment
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Judgements

A JUDGEMENT supplies type information to the typechecker
beyond what comes from the function definition.

I For mod, if the domain of the function is restricted, then
the return type is restricted.

i,k: VAR int

m: VAR posnat

mod_below: JUDGEMENT mod(i,m) HAS_TYPE below(m)

Once we have the mod below judgement, we can prove the
mod pos lemma in only three steps:
(SKOSIMP) (ASSERT) (ASSERT)

I And we didn’t have to explicitly bring in mod below

Or two steps if we bring in the judgement:
(SKOSIMP) (REWRITE "mod below")
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No Free Lunch

PVS will create a TCC that requires us to prove the
judgement is correct.

% Judgement subtype TCC generated (at line ...) for mod(i,m)

% expected type below(m)

% unfinished

mod_below: OBLIGATION FORALL (i,m): mod(i,m)>=0 AND mod(i,m)<m;

This proof is very similar to the original proof of mod pos.
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Unnamed Judgements

We may name judgements like we saw above, but PVS also
allows judgements to be unnamed as in

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

JUDGEMENT mod(i,m) HAS_TYPE below(m)

I Cannot refer directly to an unnamed judgement

I Prover commands still apply it

I Proof of mod pos

(SKOSIMP) (ASSERT) (ASSERT)
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Judgements for Types

I In the previous slides we have seen how to use a
judgement to show that an expression has a certain
type.

I JUDGEMENT can also be used to show that a type is a
subtype of another.

zero_to_five: TYPE = {i:int | i>=0 AND i<= 5}
zero_to_ten: TYPE = {i:int | i>=0 AND i<=10}
JUDGEMENT zero_to_five SUBTYPE_OF zero_to_ten

posreal_is_nzreal: JUDGEMENT posreal SUBTYPE_OF nzreal

equiv_is_reflexive: JUDGEMENT (equivalence?)

SUBTYPE_OF (reflexive?)

I Appropriate TCCs will be generated for each judgement
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